Publications

Export 224 results:
Author Title Type [ Year(Desc)]
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
2015
A. Kreshuk, Walecki, R., Köthe, U., Gierthmühlen, M., Plachta, D., Genoud, C., Haastert-Talini, K., and Hamprecht, F. A., Automated Tracing of Myelinated Axons and Detection of the Nodes of Ranvier in Serial Images of Peripheral Nerves, Journal of Microscopy, vol. 259 (2), pp. 143-154, 2015.
M. Kandemir and Hamprecht, F. A., Cell event detection in phase-contrast microscopy sequences from few annotations, MICCAI. Proceedings, vol. LNCS 9351. Springer, pp. 316-323, 2015.PDF icon Technical Report (564.69 KB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, pp. 1-30, 2015.PDF icon Technical Report (1.5 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, Int.~J.~Comp.~Vision, 2015.PDF icon Technical Report (5.12 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
M. Kandemir and Hamprecht, F. A., The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors, NIPS. Proceedings, vol. 44. pp. 145-159, 2015.PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
T. Beier, Hamprecht, F. A., and Kappes, J. H., Fusion Moves for Correlation Clustering, in CVPR. Proceedings, 2015, pp. 3507-3516.PDF icon Technical Report (1.19 MB)
M. Schiegg, Hanslovsky, P., Haubold, C., Köthe, U., Hufnagel, L., and Hamprecht, F. A., Graphical Model for Joint Segmentation and Tracking of Multiple Dividing Cell, Bioinformatics, vol. 31, no. 6, pp. 948-956, 2015.PDF icon Technical Report (534.29 KB)
N. Krasowski, Beier, T., Knott, G. W., Köthe, U., Hamprecht, F. A., and Kreshuk, A., Improving 3D EM Data Segmentation by Joint Optimization over Boundary Evidence and Biological Priors, in 12th {IEEE} International Symposium on Biomedical Imaging, {ISBI} 2015, Brooklyn, NY, USA, April 16-19, 2015, 2015, pp. 536-539.PDF icon Technical Report (2.25 MB)
J. Funke, Hamprecht, F. A., and Zhang, C., Learning to Segment: Training Hierarchical Segmentation under a Topological Loss, in MICCAI. Proceedings, Part III, 2015, vol. 9351, pp. 268-275.PDF icon Technical Report (2.92 MB)
M. Schiegg, Heuer, B., Haubold, C., Wolf, S., Köthe, U., and Hamprecht, F. A., Proof-reading Guidance in Cell Tracking by Sampling from Tracking-by-assignment Models, in ISBI. Proceedings, 2015, pp. 394-398.PDF icon Technical Report (648.55 KB)
C. Cali, Baghabra, J., Boges, D. J., Holst, G. R., Kreshuk, A., Hamprecht, F. A., Srinivasan, M., Lehväslaiho, H., and Magistretti, P. J., Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues, Journal of Comparative Neurology, vol. 524, pp. 23-38, 2015.
A. Kreshuk, Funke, J., Cardona, A., and Hamprecht, F. A., Who is talking to whom: synaptic partner detection in anisotropic volumes of insect brain, MICCAI. Proceedings, vol. LNCS 9349. Springer, pp. 661-668, 2015.PDF icon Technical Report (2.14 MB)
2016
T. Beier, Andres, B., Köthe, U., and Hamprecht, F. A., An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem, ECCV. Proceedings, vol. LNCS 9906. Springer, pp. 715-730, 2016.PDF icon Technical Report (4.89 MB)
M. von Borstel, Kandemir, M., Schmidt, P., Rao, M., Rajamani, K., and Hamprecht, F. A., Gaussian process density counting from weak supervision, ECCV. Proceedings, vol. LNCS 9905. Springer, pp. 365-380 , 2016.PDF icon Technical Report (1.71 MB)
C. Haubold, Ales, J., Wolf, S., and Hamprecht, F. A., A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets, ECCV. Proceedings, vol. LNCS 9911. Springer, pp. 566-582, 2016.PDF icon Technical Report (1.18 MB)
E. Meijering, Carpenter, A. E., Peng, H., Hamprecht, F. A., and Olivo-Marin, J., Imagining the future of bioimage analysis, Nature Biotechnology, vol. 34, no. 12, pp. 1250-1255, 2016.PDF icon Technical Report (924.57 KB)
M. Schiegg, Diego, F., and Hamprecht, F. A., Learning Diverse Models: The Coulomb Structured Support Vector Machine, ECCV. Proceedings, vol. LNCS 9907. Springer, pp. 585-599, 2016.PDF icon Technical Report (2.54 MB)
C. Haubold, Schiegg, M., Kreshuk, A., Berg, S., Köthe, U., and Hamprecht, F. A., Segmenting and Tracking Multiple Dividing Targets Using ilastik, in Focus on Bio-Image Informatics, vol. 219, Springer, 2016, pp. 199-229.PDF icon Technical Report (4.46 MB)
F. Diego and Hamprecht, F. A., Structured Regression Gradient Boosting, CVPR. Proceedings. pp. 1459-1467, 2016.PDF icon Technical Report (3.97 MB)
M. Kandemir, Haußmann, M., Diego, F., Rajamani, K., van der Laak, J., and Hamprecht, F. A., Variational weakly-supervised Gaussian processes, BMVC. Proceedings. 2016.PDF icon Technical Report (3.28 MB)
J. Kleesiek, Petersen, J., Döring, M., Maier-Hein, K., Köthe, U., Wick, W., Hamprecht, F. A., Bendszus, M., and Biller, A., Virtual Raters for Reproducible and Objective Assessments in Radiology, Nature Scientific Reports, vol. 6, 2016.PDF icon Technical Report (2.81 MB)
2017
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Active machine learning for training an event classification, Patent, Patent Number WO2017032775 A1, 2017.
S. Peter, Diego, F., Hamprecht, F. A., and Nadler, B., Cost-efficient Gradient Boosting, NIPS, poster. 2017.
C. Haubold, Uhlmann, V., Unser, M., and Hamprecht, F. A., Diverse M-best Solutions by Dynamic Programming, GCPR. Proceedings, vol. LNCS 10496. Springer, pp. 255-267, 2017.
V. Uhlmann, Haubold, C., Hamprecht, F. A., and Unser, M., Diverse Shortest Paths for Bioimage Analysis, Bioinformatics, pp. 1-3, 2017.
S. Wolf, Schott, L., Köthe, U., and Hamprecht, F. A., Learned Watershed: End-to-End Learning of Seeded Segmentation, ICCV. pp. 2030-2038, 2017.PDF icon Technical Report (3.76 MB)
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Maschinelles Lernen, Patent, Patent Number WO2017032775A1, 2017.PDF icon Technical Report (317.04 KB)
T. Beier, Pape, C., Rahaman, N., Prange, T., Berg, S., Bock, D., Cardona, A., Knott, G. W., Plaza, S. M., Scheffer, L. K., Köthe, U., Kreshuk, A., and Hamprecht, F. A., Multicut brings automated neurite segmentation closer to human performance, Nature Methods, vol. 14, no. 2, pp. 101-102, 2017.
N. Krasowki, Beier, T., Knott, G. W., Köthe, U., Hamprecht, F. A., and Kreshuk, A., Neuron Segmentation with High-Level Biological Priors, IEEE Transactions on Medical Imaging, vol. 37, no. 4, 2017.
V. Ulman, Maška, M., Magnusson, K. E. G., Ronneberger, O., Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D., Radojevic, M., Smal, I., Rohr, K., Jaldén, J., Blau, H. M., Dzyubachyk, O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S. - Y., Dufour, A., Olivo-Marin, J. C., Reyes-Aldasoro, C. C., Solis-Lemus, J. A., Bensch, R., Brox, T., Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F. A., Esteves, T., Quelhas, P., Demirel, Ö., Malström, L., Jug, F., Tomančák, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M., and Ortiz-de-Solorzano, C., An Objective Comparison of Cell Tracking Algorithms, Nature Methods, vol. 14, no. 12, pp. 1141-1152, 2017.PDF icon Technical Report (4.24 MB)
S. Peter, Kirschbaum, E., Both, M., Campbell, L. A., Harvey, B. K., Heins, C., Durstewitz, D., Diego, F., and Hamprecht, F. A., Sparse convolutional coding for neuronal assembly detection, NIPS, poster. 2017.

Pages